A Case for Climate Engineering

Look inside
A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming.

Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake.

A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.

Keith's proposal is audacious at first, but in the course of this brief book he makes a convincing case.—Slate

Keith manages to keep the tone sober without ever sounding dull. His chapter on ethics deftly summarises some of the competing moral claims…Reading about proposals to alter the climate of an entire planet on purpose is dizzying. Yet scientists already talk of the dawning of a new geological age, the Anthropocene, named because humans, or rather, the industrial civilisation they have created, have become the main factor driving the evolution of Earth. [The Case for Climate Engineering emphasises] just how seriously the idea of deliberately altering the climate is being considered, both in scientific journals and among some governments…[Keith is] a guide for the undecided.

The Economist

Keith deserves credit for directing attention to ideas he knows are dangerous. Accepting the concept of the Anthropocene means accepting that humans have the responsibility to find technological fixes for disasters they have created. But little progress has been made toward a process for rationally supervising such activity on a global scale. We need a more open discussion about a seemingly outlandish but real geopolitical risk: war over climate engineering.

Eli Kintisch, Technology Review
David Keith has worked near the interface between climate science, energy technology, and public policy for twenty years. He is currently the Gordon McKay Professor of Applied Physics in the School of Engineering and Applied Sciences (SEAS) at Harvard University and Professor of Public Policy at the Harvard Kennedy School.

About

A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming.

Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake.

A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.

Reviews

Keith's proposal is audacious at first, but in the course of this brief book he makes a convincing case.—Slate

Keith manages to keep the tone sober without ever sounding dull. His chapter on ethics deftly summarises some of the competing moral claims…Reading about proposals to alter the climate of an entire planet on purpose is dizzying. Yet scientists already talk of the dawning of a new geological age, the Anthropocene, named because humans, or rather, the industrial civilisation they have created, have become the main factor driving the evolution of Earth. [The Case for Climate Engineering emphasises] just how seriously the idea of deliberately altering the climate is being considered, both in scientific journals and among some governments…[Keith is] a guide for the undecided.

The Economist

Keith deserves credit for directing attention to ideas he knows are dangerous. Accepting the concept of the Anthropocene means accepting that humans have the responsibility to find technological fixes for disasters they have created. But little progress has been made toward a process for rationally supervising such activity on a global scale. We need a more open discussion about a seemingly outlandish but real geopolitical risk: war over climate engineering.

Eli Kintisch, Technology Review

Author

David Keith has worked near the interface between climate science, energy technology, and public policy for twenty years. He is currently the Gordon McKay Professor of Applied Physics in the School of Engineering and Applied Sciences (SEAS) at Harvard University and Professor of Public Policy at the Harvard Kennedy School.